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Abstract. We study both numerically and analytically what happens to a random graph of average connec-
tivity α when its leaves and their neighbors are removed iteratively up to the point when no leaf remains.
The remnant is made of isolated vertices plus an induced subgraph we call the core. In the thermodynamic
limit of an infinite random graph, we compute analytically the dynamics of leaf removal, the number of
isolated vertices and the number of vertices and edges in the core. We show that a second order phase
transition occurs at α = e = 2.718 . . . : below the transition, the core is small but above the transition, it
occupies a finite fraction of the initial graph. The finite size scaling properties are then studied numerically
in detail in the critical region, and we propose a consistent set of critical exponents, which does not coincide
with the set of standard percolation exponents for this model. We clarify several aspects in combinatorial
optimization and spectral properties of the adjacency matrix of random graphs.

PACS. 02.10.-v Logic, set theory, and algebra – 02.50.-r Probability theory, stochastic processes, and
statistics – 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions – 64.60.Fr
Equilibrium properties near critical points, critical exponents

1 Introduction

What remains of a graph when leaves are iteratively re-
moved until none remains? The answer depends on what
is meant by leaves.

In the most standard definition, a leaf is a vertex with
exactly one neighbor, and leaf removal deletes this ver-
tex and the adjacent edge. In the context of large random
graphs where the connectivity α (the average number of
neighbors of a vertex) is kept fixed and the number of
vertices N → ∞, the answer is well known and inter-
esting. When α < 1, the remnant after leaf removal is
made of O(N) isolated vertices, plus a subgraph of size
o(N) without leaves. When α > 1, the remnant still con-
tains O(N) isolated points, but the rest is a subgraph
of size O(N), which is dominated by a single connected
component usually called the backbone. The a priori sur-
prising, but rather general, fact that backbone percola-
tion and standard percolation occur at the same point,
namely at α = 1, has a very simple explanation for ran-
dom graphs. Indeed, a large random graph of average con-
nectivity α < 1 consists of a forest (union of finite trees)
plus a finite number of finite connected components with
one closed loop. Obviously, each tree shrinks to a sin-
gle isolated point after leaf removal. However, at α = 1
the percolation transition occurs and when α > 1, a ran-
dom graph consists of a forest plus a finite number of
components with one closed loop, plus a “giant” connected
component containing a finite fraction of the vertices and

a e-mail: {bauer, golinelli}@spht.saclay.cea.fr

an extensive number of loops. No loop is destroyed by leaf
removal so that the giant component leads to a macro-
scopic connected remnant after leaf removal. The percola-
tion transition was discovered and studied by Erdös and
Rényi in their seminal paper [1]. This has initiated a lot of
work on the random graph model, and many fine details
concerning the structure of the percolation transition have
been computed (see e.g. Ref. [2]).

The random graph model is believed to be essentially
equivalent to a mean field approximation for percolation
on (finite dimensional) lattices, leading to critical expo-
nents which are valid above the upper critical dimension,
which is dc = 6 for percolation.

In this paper, we consider the removal of a slightly
more complicated pattern: we remove at each step not
only the leaf but also its neighbor (and consequently all
adjacent edges). To avoid cumbersome circumlocutions, in
the rest of this paper, we call leaf the pair “standard leaf
+ its neighbor”. Now leaf removal deletes two vertices
(a vertex with a single neighbor and this neighbor) and
all the edges adjacent to one or both vertices. It is quite
natural to study the removal of these patterns because it
has a number of applications to graph theory: several nu-
merical characteristics of a graph behave nicely under leaf
removal. One such characteristic, which was our original
motivation from physics, is the multiplicity of the eigen-
value 0 in the adjacency matrix of the graph. Others are
the minimal size of a vertex cover and the maximal size of
an edge disjoint subset (the matching problem), questions
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which are related to various combinatorial optimization
problems.

The matching problem had already led mathemati-
cians to a thorough study of leaf removal (see Refs. [3,4]
and references therein). In fact, parts of our analytical re-
sults have already been obtained in this context. However,
we have obtained them independently by a direct enumer-
ation technique which turned out to be quite similar to a
counting lemma for bicolored trees that appeared in [5].

The main result on the structure of the remnant af-
ter iterated leaf removal when the graph is a large ran-
dom graph of finite connectivity α is the following. The
residue consists of i(α)N + O(1) isolated points and an
induced subgraph without leaves or isolated points which
we call the core. It contains c(α)N + O(1) vertices and
l(α)N +O(1) edges. For α < e = 2.718 . . . , c(α) = l(α) =
0 so the core is small. A second order phase transition
occurs at α = e and for α > e, c(α) and l(α) are > 0.
We shall argue that the core is made of a giant connected
“core” component plus a finite number of small connected
components involving a total of o(N) vertices. The func-
tion i(α) is always non-vanishing, but it is non-analytic at
α = e.

The phase transition at α = e was found initially
for the matching problem [3,4]. Physicists however have
observed independently that some properties of random
graphs are singular at α = e (see Ref. [6] for replica sym-
metry breaking in minimal vertex covers, Ref. [7] for a
localization problem, and, in a numerical context, Ref. [8]
where an anomaly close to the eigenvalue 0 in the spec-
trum of random adjacency matrices was observed).

The paper is organized as follows. The general defini-
tions have been regrouped in Section 2. They are standard
and should be used only for reference.

In Section 3 we define leaf removal, leaf removal pro-
cesses obtained by iteration of leaf removals and the “core”
for an arbitrary graph.

Section 4 presents our derivation of the main results
for large random graphs. The analytical formulæ for i(α),
c(α) and l(α) are given.

In Section 5, these formulæ are checked against Monte-
Carlo simulations of leaf removal processes, which we also
use for the finite size scaling analysis in the critical region.
This leads us to the definition and numerical evaluation of
many new critical exponents. In particular, we give good
evidence that the core percolation exponents (at α = e)
are not the same as the critical exponents of standard per-
colation (at α = 1). Even if core percolation on a random
graph can presumably be seen as a mean field approxima-
tion for core percolation on (finite dimensional) lattices
with impurities, the corresponding effective field theory
and its upper critical dimension are not known to us.

In Section 6, we give two applications of our results. We
show in particular in Section 6.1 that for any α the core of
a random graph only carries a small number of 0 eigenval-
ues of the adjacency matrix and that the emergence of the
core has a direct impact on the localized and delocalized
eigenvectors with eigenvalue 0. In Section 6.2, we show
that for α < e, the problem of finding minimal vertex cov-

ers or maximal edge disjoint subsets (matchings) can be
handled very simply in polynomial time (in fact, in linear
time once the graph is encoded in a suitable form). While
the matching problem can always be solved in polynomial
time, the minimal vertex cover problem is believed to be
NP-hard for general graphs, and the same should be true
on the core of a random graph for α > e.

The formal proof that the core is a well-defined object
is given in the Appendix.

2 General definitions

We start with a few standard definitions. This section
should be used only for reference.

Graph: A graph (also called a simple undirected graph
in the mathematical literature) G is a pair consisting of
a set V called the set of vertices of G and a set E called
the set of edges of G, whose elements are pairs of distinct
elements of V . If {v, w} is an edge, the vertices v and w
are called adjacent or neighbors. They are the extremities
of the edge {v, w}. Note that there is at most one edge
between two vertices, and that there is no edge connecting
a vertex with itself: the word simple above refers to these
two restrictions.

Adjacency matrix: The adjacency matrix of a graph
G is a square matrix Mv,w indexed by vertices of G and
such that Mv,w = 1 if {v, w} is an edge of G and 0 other-
wise. Note that M is a symmetric 0–1 matrix with zeroes
on the diagonal. Conversely, any such matrix is the adja-
cency matrix of a graph. We denote by Z(G) the dimen-
sion of the kernel (that is, the subspace of eigenvectors
with eigenvalue 0) of the adjacency matrix of G.

Induced subgraph: If V ′ ⊂ V , the graph with vertex
set V ′ and edge set E′ those edges in E with both extrem-
ities in V ′ is called the subgraph of G induced by V ′.

Random graph in the microcanonical ensem-
ble: If V = {1, · · · , N}, there are

(
N(N−1)/2

L

)
graphs with

vertex set V and L edges (making a total of 2N(N−1)/2

graphs with vertex set V ). Saying that all
(
N(N−1)/2

L

)
are

equiprobable turns the set of graphs on N vertices and
L edges into a probability space whose elements we call
random graphs in the microcanonical ensemble. This is the
ensemble we use below for numerical simulations.

Random graph in the canonical ensemble: Given
a number p ∈ [0, 1], we introduce N(N−1)

2 independent
random variables εi,j, 1 ≤ i < j ≤ N , each taking value
1 with probability p and 0 with probability 1− p. Saying
that {i, j} is an edge of G if and only if εi,j = 1 turns
the set of all 2N(N−1)/2 graphs with vertex set V into a
probability space whose elements we call random graphs
in the canonical ensemble. This is the ensemble we use
below for analytical computations.

Connectivity, α: In the sequel, we are interested
in the large N limit with a finite limit α for 2L

N
(microcanonical ensemble) or for p(N − 1) (canonical en-
semble). The parameter α is the average connectivity, the
average number of neighbors of a given vertex in the ran-
dom graph.
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Fig. 1. In this example, the leaf (v,w) is removed, as well as
the four edges touching v: the new graph G′ is the subgraph of
G induced by the five remaining vertices. Note that the vertex
t is now isolated, and that a new leaf (z, y) has been created.

If N (p(1− p))1/2 → ∞ and L ∼ pN(N−1)
2 , the ther-

modynamic properties of a G(N,L) in the microcanonical
ensemble and of a G(N, p) in the canonical ensemble are
the same. This is in particular true if pN = α is kept fixed
as N →∞.

3 Leaf removal process and the core
of a graph

Our aim is to define, for any (random or not) finite graph
G, a remarkable subgraph which we call the core of G. It
is obtained by leaf removal, an operation that we define
now.

Leaf : A leaf of a graph G is a couple of vertices (v, w)
such that {v, w} is an edge of G and w belongs to no
other edge of G. Note that this is not the most standard
definition and that (v, w) and (w, v) are both leaves if and
only if {v, w} is a connected component of G.

Bunch of leaves: A bunch of leaves is a maximal
family of leaves with the same first vertex. The leaves of a
graph can be grouped into bunches of leaves in an unique
way.

Leaf removal: If (v, w) is a leaf of G, and G′ the
subgraph of G induced by V \{v, w}, we say that G′ is
obtained from G by leaf removal of (v, w). In other words,
G′ is obtained from G by removing vertices v and w, the
edge {v, w} and all other edges touching v. Note that this
operation can destroy other leaves of G and also create
new leaves. See Figure 1 for a pictorial example.

Step by step leaf removal process: Start from a
graph G. If G has no leaves, stop. Else, choose a leaf (v, w)
and remove it, leading to a graph G′. If G′ has no leaves,
stop. Else, choose a leaf (v′, w′) and remove it. This oper-
ation is iterated until no leaf remains.

History: A sequence G, (v, w), G′, (v′, w′), · · · associ-
ated to a step by step leaf removal process is called an
history.

Isolated points, I; Core of a graph, C: The last
term in an history starting from G is a graph which splits
into a collection of isolated points I, and an induced sub-
graph C of G without leaves or isolated points which we
call the core of G. We denote the number of points in the
core by Nc and the number of edges in the core by Lc.

For these definitions to make sense, one has to show
that the number of isolated points and the core are well

defined, that is, do not depend on the choice of history.
The formal proof is given in the Appendix.

Global leaf removal process: Start from a graph G.
If it has no leaves, stop. Else select one leaf in every bunch
of leaves. Remove from the vertex set V both extremities
of all the selected leaves, and define V (1) to be the set of
remaining vertices. Let G(1) be the subgraph of G induced
by V (1). Note that the leaves of G(1) (if any) are not leaves
of G. In this operation, the vertices belonging to a bunch
of G that were not selected become isolated points of G(1).
They remain isolated for the rest of the process. Iterate the
procedure and define G(2), G(3), · · · until a graph without
leaves is obtained.

In the proof given in the Appendix that the core is
well-defined, the argument in step 3c implies in particular
that leaf removals that take place in distinct bunches of
a graph commute. It implies that the global leaf removal
process leads to same core and number of isolated points
as any step by step leaf removal process.

While the global leaf removal process is convenient for
analytical computations, the step by step leaf removal pro-
cess is easier to implement on the computer.

4 Core percolation: infinite N results

The global leaf removal process allows to compute the
most salient characteristics of the leaf removal process,
the functions i(α), c(α) and l(α). Remember that by def-
inition, the number of isolated points after leaf removal
is Ni(α) + o(N), the number of vertices in the core is
Nc = Nc(α) + o(N), and the number of edges in the core
is Lc = Nl(α) + o(N). The clue is an enumeration of all
the configurations on the random graph that contribute
extensively to the fundamental events in the global leaf re-
moval process at step n (which goes from G(n−1) to G(n)):
emergence of a new isolated point, removal of a point, re-
moval of an edge1. This enumeration is possible because
the finite configurations of vertices and edges in the ran-
dom graph with extensive multiplicity are tree-like. This
implies that the problem has a recursive structure. The
weight of a tree is chosen so as to reproduce the correct
random graph weight: a vertex has weight e−α and an edge
has weight α. One has to be rather careful to avoid dou-
ble counting and omissions; the examination of all cases
is very tedious so we omit the details and simply outline
the strategy.

The key ingredient is a study of leaf removal on rooted
trees. Starting from a rooted tree, we apply the global leaf
removal process, with the convention that even if the root
has only one neighbor, it is not counted as a standard
leaf2. We let pn, n ≥ 0 be the generating function for

1 The method of references [3,4] relies on approximate dif-
ferential equations that apply to a slightly different model of
random graphs. It is very powerful, but less intuitive than the
direct enumeration method that follows.

2 However, a configuration where a neighbor of the root is a
standard leaf is treated as usual.
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rooted trees whose root becomes isolated exactly at step
n of the global leaf removal process, and qn, n ≥ 1 be the
generating function for rooted trees whose root is removed
exactly at step n of the global leaf removal process. For in-
stance, p0 counts rooted trees with an isolated root, hence
trees with a single vertex, and p0 = e−α. As another ex-
ample, q1 counts rooted trees whose root touches at least
one standard leaf. Consider the trees whose root touches
exactly k ≥ 1 standard leaves, and l ≥ 0 other vertices.
These l vertices can be seen as roots of non-trivial sub-
trees of the original tree, so by definition they contribute
to 1− p0. So the weight is

e−α
(αe−α)k

k!
(α(1− p0))l

l!
·

Hence

q1 = e−α
∑
k≥1

∑
l≥0

(αe−α)k

k!
(α(1− p0))l

l!
= 1− e−αe−α ·

In the same way, contributions to pn or qn for larger
n′s can be analyzed in terms of the trees attached to the
neighbors of the root, and the structure of these trees in-
volves lower order contributions. In contributions to pn,
the root has at least one neighbor whose attached tree
contributes to qn and any number of neighbors contribut-
ing to q1 or q2 or · · · or qn−1. So

pn = e−α(eαqn − 1)eα(qn−1+···+q1).

Analogously, in contributions to qn, the root has at least
one neighbor whose attached tree contributes to pn−1 and
any number of neighbors none of which contributing to p0

or p1 or · · · or pn−1. So

qn = e−α(eαpn−1 − 1)eα(1−pn−1−···−p0).

These two relations allow it to be shown that

pn = e2n+1 − e2n−1 for n ≥ 0
qn = e2n−2 − e2n for n ≥ 1,

where en(α) is the sequence of iterated exponentials, de-
fined by

e−1 = 0 and en = e−αen−1 for n ≥ 0. (1)

The events on the random graph that at step n of the
global leaf removal process a given vertex becomes iso-
lated, or that a given vertex disappears, or that a given
edge disappears can all be interpreted in terms of the pre-
vious configurations. In each case, the different possible
contributions have to be taken into account, and also the
rule that a root with a single neighbor can be touched by
leaf removal has to be enforced. We omit this painful case
by case analysis and only state the results.

The explicit formulæ for extensive contribution to the
average number Nin(α) of isolated vertices, Ncn(α) of

0 1 2 3 4

Connectivity a

0

1

2

W
= A

= B

W

A

B

Fig. 2. The special functions W (α), A(α) and B(α), which
coincide for α ≤ e.

non isolated vertices and Nln(α) of edges in G(n) are

in(α) = e2n+1 + e2n + αe2ne2n−1 − 1,
cn(α) = e2n − e2n+1 − αe2ne2n−1 + αe2

2n−1, (2)

ln(α) =
α

2
(e2n − e2n−1)2.

Now comes the crucial fact: when α ≤ e, the sequence
en(α) converges to W (α)/α, where W (α) is the Lambert
function, defined for α ≥ 0 as the unique real solution of
the equation W eW = α. The function W (α) is analytic for
α ≥ 0. When α > e, W (α)/α remains a fixed point of the
iteration equation (1) but it is unstable: the sequence {en}
is oscillating. However the even subsequence e2n and odd
subsequence e2n+1 are still convergent. The even limit is
strictly larger than the odd limit. We define the functions
A(α) and B(α) for α ≥ 0 by

lim
n→∞

e2n =
B

α
and lim

n→∞
e2n+1 =

A

α
·

Then (A,B) solve the system

AeB = α, BeA = α. (3)

For α ≤ e, the unique solution is A = B = W . For α > e,
the previous solution becomes unstable and (A,B) is the
solution of equation (3) selected by the rule A < W < B.
This is summarized in Figure 2.

Taking the limit in equation (2) leads to

i(α) =
A+B +AB

α
− 1,

c(α) =
(B −A)(1−A)

α
, (4)

l(α) =
(B −A)2

2α
·
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For α ≤ e, c(α) = l(α) = 0, and the core indeed has a
size o(N). On the other hand, the core occupies a finite
fraction c(α) of the vertices for α > e. The behavior of
equation (1) is responsible for this geometric transition,
core percolation, at α = e. As c(α) and l(α) → 0 when
α → e+, these functions are continuous but their deriva-
tives are not: the transition is of second order. Note again
that core percolation appears at α = e, contrary to back-
bone percolation, which occurs at α = 1.

The fact that the core of a graph is an induced sub-
graph of the original graph allows to give a physicist’s
argument for the uniqueness of the giant component in
the core. Fix α > e. If the core of the random graph con-
tains two or more large connected components, there was
no edge with extremities in two components in the orig-
inal graph. But as the total size of the large connected
components is of order N , the absence of such an edge is
extremely unlikely.

The behavior of thermodynamic functions close to the
transition is the following. Writing α = e(1 + ε), for small
negative ε,

A(α) = B(α)

= 1 +
1
2
ε− 3

16
ε2 +

19
192

ε3 − 185
3072

ε4 +
2437
61440

ε5 +O(ε6)

while for small positive ε,

A(α)=1− 61/2ε1/2 + 2ε− 61/2

20
ε3/2 − 3

5
ε2 +O(ε3/2),

B(α)=1 + 61/2ε1/2 + 2ε+
61/2

20
ε3/2 − 3

5
ε2 +O(ε3/2).

For i(α), this implies that there is a jump only in the
second derivative of at the transition, with

i(α) =
3− e
e
− 1
e
ε+


1
2eε

2 +O(ε3) for ε < 0

2
eε

2 +O(ε3) for ε > 0

while c(α) and l(α) have a jump in the first derivative at
the transition, with

c(α) =

{
0 for ε < 0
12
e ε−

4(6)1/2

e ε3/2 − 54
5eε

2 +O(ε5/2) for ε > 0

and

l(α) =

{
0 for ε < 0
12
e ε−

54
5eε

2 +O(ε3) for ε > 0.

The expansion for l contains only integral powers of ε, and
this may be related to the fact (see Sect. 5) that the finite
size corrections for the number of edges in the core Lc are

slightly nicer than the ones for the number of vertices in
the core Nc. The average connectivity of the core is

αeff =
2l(α)
c(α)

=
B −A
1−A = 2 +

2(6)1/2

3
ε1/2 +

4
3
ε+O(ε3/2)

for ε > 0, which implies that giant core component should
look like a large loop for α close to e+. The exponent 1/2
in the first correction makes such a property quite difficult
to see numerically at large but finite N .

In the random graph model, the vertices do not live in
any ambient space, and the notion of correlation length is
ambiguous. This problem will reappear in the finite size
scaling analysis of the next section. However, the emer-
gence of the core is very reminiscent of critical phenom-
ena in physics. In particular, the critical slowing down is
observable during the global leaf removal process. Indeed,
the speed of convergence of the iterated exponential se-
quence can be computed. One finds that for α 6= e, the
convergence is exponential: the convergence rate ξ−1(α) is
given by the formula

ξ−1 =
A+B

2
− logα,

and more precisely

en −
W

α
∼ (−)nwe−n/ξ for α < e,

e2n+1 −
A

α
∼ −ae−(2n+1)/ξ for α > e,

e2n −
B

α
∼ be−2n/ξ for α > e,

where a(α), w(α) and b(α) are positive functions (they
coincide for α < e and be−B/2 = ae−A/2). When α→ e−,
ξ ∼ 2e

e−α , and when α→ e+, ξ ∼ e
α−e .

At α = e, the convergence is algebraic, and

e

(
en −

1
e

)
=

(−)n
61/2

n1/2
+

3
2n

+ (−)n+1 21(6)1/2

80
logn
n3/2

+O(
1

n3/2
).

This leads to the asymptotics at α = e:

in =
3− e
e

+O

(
1

n3/2

)
,

cn =
6
en

(
1− 31/2

4n1/2
− 21

80
logn
n

+O

(
1
n

))
,

ln =
6
en

(
1− 21

80
logn
n

+O

(
1
n

))
.

The first correction for cn is more important that the one
for ln. Moreover the logarithms at α = e lead to suspect
that the finite size analysis of the next section might also
be complicated by logarithms.
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5 Numerical studies of the core percolation

The analytical computations above have enabled us to
locate a phase transition at α = e. They give informa-
tion concerning the critical region but do not exhaust all
the critical exponents. So we made an extensive numer-
ical analysis of the core using Monte-Carlo simulations.
At the first step this can also be used to check the previ-
ous analytical results. But let us start with the numerical
algorithm.

5.1 Monte-Carlo algorithm

Our Monte-Carlo simulations consist in generating lots of
random graphs, removing leaves step by step, and study-
ing the remaining cores and isolated points. More pre-
cisely, for a given set of parameters (N,α), we generated
random graphs in the microcanonical ensemble, with N
vertices and L = Nα/2 edges (L is rounded to the nearest
integer value). In the microcanonical ensemble the total
number L of edges is fixed (in contrast to the canonical
ensemble in which L fluctuates).

As we want to simulate graphs with N up to 106 and
with an average connectivity α of order O(1), we must
use an algorithm which requires computer memory and
time of order O(N), not O(N2). With the microcanoni-
cal ensemble, the program is simpler: a random graph is
obtained by choosing at random L distinct edges among
all the possible edges. From a Monte-Carlo point of view,
the microcanonical ensemble has another advantage: the
measurements fluctuate less.

As the graph (or equivalently its adjacency matrix)
is very sparse, it is stored in an array T of 2L integers,
indexed by an arrayK of N+1 integers; the set of vertices
adjacent to the vertex v is the array section {T (i)} where
K(v) ≤ i < K(v+1). Then the connectivity of v is K(v+
1)−K(v). This defines the arrayK, with the rules K(1) =
1 and K(N + 1) = 2L+ 1.

Note that each edge {v, w} appears twice in T : once
for v and once for w. This requires twice more memory
than a storage method exploiting the symmetry of the
matrix (in which the edges appear only once), but the
computational task is faster because the adjacent vertices
of a given vertex are simply obtained from arrays T andK.

The leaf removal process is done leaf by leaf. Each
time a leaf is removed, the adjacent vertices are exam-
ined: if new leaves appear, there are added to a list of po-
tential leaves to be considered later. Each elementary leaf
removal requires a computational time of order O(1) and
not O(N). So the computational time for the global leaf
removal is proportional to the number of removed leaves,
which is bounded by N/2. Then the total computational
time for one random graph (generation and leaf removing)
is N times a function of α.

For each random graph, we have measured the num-
ber of isolated points |I|, the size (number of vertices)
of the core Nc, the number of edges of the core Lc and
consequently the average connectivity of the core 2Lc/Nc:
there are estimators of Ni(α), Nc(α), Nl(α) and αeff , as

defined before. As usual in Monte-Carlo simulations, aver-
ages have been done over many random graphs, and their
confidence intervals (or error bars) are estimated by the
variance of the measurements.

For each value of α, we have generated 10 000 graphs of
size N = 100, N = 1000 and N = 10 000, and 1000 graphs
of size N = 100 000 and N = 1 000 000. At the transition
value α = e, 10 000 graphs have been generated for all
the sizes. The whole computation takes a few days on a
medium Sun workstation without special optimization.

5.2 Monte-Carlo results

In Figure 3, Monte-Carlo averages of Nc/N , Lc/N and
2Lc/Nc are compared with the infinite N results, c(α),
l(α) and αeff . Errors bars are not drawn because they are
smaller than the size of symbols. This figure is a typical
case of a second order transition. Far from the transition,
differences between finite N and thermodynamic (i.e. N =
∞) functions are small. Finite size effects are at least of
order 1/N , because the analytical calculations do not take
into account the loops of finite size: their number is O(1),
so their contributions are O(1/N). The simplest example
is the “triangle” subgraph made of three vertices and three
edges, not connected to the rest of the graph. Obviously,
the triangles have no leaf and belong to the core: their
contribution to Nc is (αe−α)3/2.

We have verified that finite size effects are of order
O(1/N) (but not larger) for c(α) and l(α) far from the
transition. For αeff , this is probably true but less clear
because fluctuations are stronger. On the other hand, in
the critical region α ∼ e, finite size effects are larger and
some critical exponents can be defined. They are discussed
later.

We have also examined the variances of the size, num-
ber of edges and average connectivity of the core. For α
not too close to e and large N , we expect that the fluctua-
tions (square root of the variance) are of order O(

√
N) for

Nc and Lc, and O(1/
√
N) for αeff . So to obtain a large N

limit, we define χc(α) ≡ Var(Nc)/N , χl(α) ≡ Var(Lc)/N
and χα(α) ≡ N Var(2Lc/Nc). These quantities are anal-
ogous in the spin models to the magnetic susceptibility
(equivalent to the fluctuations of the magnetization).

In Figure 4, Monte-Carlo estimations of χc and χl
show that χc(α) and χl(α) have a finite limit for N =∞
when α > e, a vanishing limit when α < e and diverge
when α approaches the critical value e. By analogy with
c(α) ∼ l(α) ∼ (α − e) and αeff − 2 ∼ (α − e)1/2 when
α→ e+, power laws are expected for the divergences. So,
we define two critical exponents ρ and ρ′ by

χc(α) ∼ χl(α) ∼ (α− e)−ρ, (5)

χα(α) ∼ (α− e)−ρ′ , (6)

when α→ e+. The exponent ρ could be numerically mea-
sured by plotting log(χc) or log(χl) versus log(α− e). Un-
fortunately, this gives poor results because the curvature
of the plot is too important, with a slope ρ changing from
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Fig. 3. Monte-Carlo averages (symbols) and analytical results
(solid line) for the size, edges and average connectivity of the
core.

1 to 0.5. But it is possible for αeff . Figure 5 is a log-log
plot of χα(α) versus (α−e). Symbols are lined up correctly
and the global slope gives the estimation

ρ′ = 1.5(1).

The studies of isolated points are resumed in Figure 6.
Monte-Carlo averages of |I|/N are compared with the in-
finite N results, i(α): errors bars and finite size effects
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Fig. 4. Monte-Carlo estimations of the variance of the size of
the core χc(α) and the variance of the number of edges of the
core χl(α).

Fig. 5. Monte-Carlo estimations of χα(α) (variance of the av-
erage connectivity of the core) versus (α − e). The axes are
labeled by decimal logarithms.
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Fig. 6. Monte-Carlo averages |I|/N and variance χi(α) of the
number of isolated points. The solid line is the analytical result
i(α) for N =∞.

are so small that they are not visible. On the other hand,
the variance χi(α) = Var(|I|)/N shows bigger statistical
fluctuations, but the finite size effects remain small. This
variance does not diverge anywhere. However we see a
cusp when α→ e+ compatible with

χi(e)− χi(α) ∼ (α − e)τ

with estimations χi(e) = 0.095(5) and τ = 0.6(1). As
τ < 1, the first derivative is infinite at α = e+.

5.3 Finite size scaling

We now concentrate on the finite N behavior, first exactly
at the transition α = e and then in the critical region
around this transition.

By analogy with the classical percolation transition at
α = 1 where the size of the largest connected component
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Finite size effects at the transition

Fig. 7. Top to bottom: the average connectivity (mean and
width), the number of edges (mean and width) and the size
(mean and width) of the core versus the size N of the random
graph. The axes are labeled by decimal logarithms. The nega-
tive slopes are measurements of −φ (for the connectivity) and
ω − 1 (for size and edges)

is [1] of order O(N2/3) and its average connectivity is 2 +
O(1/N2/3), we postulate the existence of other critical
exponents ω and φ defined by

Nc ∼ Lc ∼ Nω, (7)

αeff − 2 ∼ N−φ (8)

when N → ∞ at α = e. This hypothesis is tested in
Figure 7: data are correctly fitted by power-laws with

ω = 0.63(1) and φ = 0.21(1).

Of course, if the large N behavior is modified by a (power
of a) logarithmic function, the true values of the exponents
are different than their apparent values when N is large
but finite. Here these exponents are determined by consid-
ering the averages of the Monte-Carlo measurements. The
width σ of their distributions are also plotted in Figure 7:
means and widths have similar slopes. Consequently

χc(e) ∼ χl(e) ∼ N2ω−1 and χα(e) ∼ N1−2φ (9)

diverge when N →∞ at α = e.
As widths and means of the Monte-Carlo measure-

ments are of the same order, the distributions remain
broad in the large N limit at the transition. On the con-
trary, when α 6= e, the distributions are sharp. In Figure 8,
the cumulative distribution functions Prob(Nc/N

ω ≤ x),
Prob(Lc/N

ω ≤ x) and Prob((2Lc/Nc − 2)Nφ ≤ x) are
plotted as functions of the scaling variable x for α = e.
We observe that the curves converge when N is large to
scaling distributions (independent of N) and this confirms
the hypotheses equations (7) and (8).
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Fig. 8. Cumulative distribution functions of the size, the num-
ber of edges and the average connectivity of the core, as func-
tions of their respective scaled variables. We have set ω = 0.63
and φ = 0.21.

When x becomes large, these scaling distribution func-
tions decrease like a Gaussian. Consequently, they are not
large distributions in the sense that every moment is fi-
nite, in agreement with equation (9). On the other side,
these functions seem to be power laws for small x. This
allows to define another exponent δ with

Prob(Nc/N
ω ≤ x) ∼ Prob(Lc/N

ω ≤ x) ∼ xδ (10)

when x→ 0. Our estimation is

δ = 0.36(3).

The numerical values suggest that ω+ δ = 1, but we have
no argument to explain it.

By considering the probability that the core of a ran-
dom graph is void at α = e, we measured a new exponent

η = 0.25(1)

where η is defined by

Prob(Nc = 0) ∼ N−η.

The limit x → 0 in equation (10) gives the conjectured
relation η = ωδ, which is numerically acceptable. With
the hypothesis ω + δ = 1, it gives η = ω(1− ω).

We have also considered Prob(Lc = Nc), i.e. the prob-
ability that the average connectivity of the core is ex-
actly 2. In this case, the core is made of one or several
simple loops without branching. The Monte-Carlo study
indicates that the large N limit could be a pure number:
0.12(2). More intensive simulations are needed to confirm
(or invalidate) this result.

More relations between critical exponents can be ob-
tained by using the finite size scaling hypothesis [9]: in
the vicinity of the transition, the behavior of finite ran-
dom graphs is determined by the scaling variable

y = (α− e)Nθ

where θ is a positive scaling exponent.
First we shortly resume the scaling theory for a general

quantity Q(N,α), for size N and connectivity α. For N =
∞, let us suppose that

Q(α) ∼ (α − e)γ

when α→ e+ (γ could be positive or negative). Then we
expect in the critical region that

Q(N,α) ∼ N−γθ Q̃(y)

where the scaling function Q̃(y) is defined by

Q̃(y) ≡ lim
N→∞

Nγθ Q(N, e+ y/Nθ),

which behaves as

Q̃(y)
y→+∞∼ yγ .

As y = 0 exactly at the transition α = e,

Q(N, e) ∼ N−γθ.

So the exponent of finite size effects at the transition and
the exponent of critical behavior for N =∞ in the vicin-
ity of the transition are related by θ. This remark is use-
ful only if different quantities share the same θ. For usual
models of statistical physics with a 2-D or 3-D geometry
(like classical spin systems), the exponent θ describes the



348 The European Physical Journal B

Fig. 9. Finite size scaling for the edges of the core in the
critical region.

divergence of the correlation length ξ. So the uniqueness
of ξ implies the uniqueness of θ. Unfortunately for ran-
dom graphs, we have no equivalent length and no simple
phenomenological interpretation for θ. However we shall
assume that θ is unique.

As we have computed exact N = ∞ formulæ in
Section 4, we can directly study Q(N,α) −Q(α), i.e. the
finite size effects. The scaling function is now Q̃(y) − yγ
and is maximal around y = 0. From a numerical point
of view, the analysis becomes easier than the one of the
monotonic function Q̃(y).

Let us now considerNc/N and Lc/N . As c(α) ∼ l(α) ∼
(α− e) when α→ e+, for these quantities γ = 1. Then

θ = 1− ω.

In Figure 9, with the choice θ = 0.37 (induced by the nu-
merical measure of ω), Nθ(Lc/N − l(α)) is plotted versus
y = (α−e)Nθ. We see that data are well superposed: they
draw the scaling function. Note that θ is the unique fitting
parameter for this figure.

Let us now consider the variances χc(α) and χl(α). Us-
ing equations (5) and (9), the finite size scaling hypothesis
gives the new relation

ρθ = 2ω − 1.

The same analysis with the average connectivity of the
core can be done. As αeff−2 ∼ (α−e)1/2, the correspond-
ing γ = 1/2. Using equation (8), the scaling relation is

θ = 2φ.

For the variance of the connectivity χα, equations (6)
and (9) give

ρ′θ = 1− 2φ.

Table 1. Critical exponents for the geometric phase transi-
tion when the average connectivity of a large random graph
is α = e. The line “MC” displays the results of Monte-Carlo
simulations. The lines “a–d” are a few sets of values compati-
ble with scaling relations. The line “c” has our preference (see
text).

θ, δ ω φ ρ ρ’ η

MC 0.36(3) 0.63(1) 0.21(1) 1.5(1) 0.25(1)

a 1/3 2/3 1/6 1 2 2/9

b 0.37 0.63 0.185 0.70 1.70 0.233

c 2/5 3/5 1/5 1/2 3/2 24/100

d 0.42 0.58 0.21 0.38 1.38 0.244

By eliminating θ, other relations are obtained: ρ′ = ρ+ 1
and 2φ+ ω = 1.

With these four scaling relations and the Monte-Carlo
determinations, we will now try to conjecture the exact
values of these exponents. Table 1 resumes the following
considerations. The results of Monte-Carlo simulations are
given in line “MC”. Other lines are suggestions for sets of
exponents compatible with the four scaling relations.

The line “b” is obtained by using the numerical de-
termination of ω and the scaling relations. In particular,
it gives θ = 0.37(1). The line “d” uses the numerical de-
termination of φ; it gives θ = 0.42(2). As the difference
between these two values of θ is about twice larger than
the uncertainty, we cannot definitely conclude whether the
size and the connectivity of the core share the same scaling
exponent θ or not.

The line “a” is obtained by assuming that ω = 2/3
and θ = 1/3, which are the values [1] of the corresponding
exponents for the classical percolation of random graphs
at α = 1. This hypothesis seems incompatible with the
Monte-Carlo estimations of φ and ρ′. Furthermore the av-
erage connectivity of the giant component near the classi-
cal percolation transition behaves with 2 +O((α−1)2) —
to be compared with 2 +O((α− e)1/2) for the core — and
consequently the corresponding exponent φ is 2θ = 2/3
(but not θ/2 = 1/6).

This gives strong evidence that the analogy between
exponents of percolation and core transitions cannot be
complete and that the effective low energy field theory
descriptions in the vicinity of the transition are different.
In particular, they may well have a different upper critical
dimension.

The line “c” assumes that the exponent ρ′ = 1.5(1) is
exactly 3/2. This is very attractive because exponents are
simple rational fractions and the value θ = 2/5 is between
the numerical estimations 0.42 and 0.37.

Of course, nothing in the theory of critical phenom-
ena requires that critical exponent are rational numbers
with small numerators (for a recent example, see Ref. [10]).
However, if we want conciliate numerical simulations, the-
oretical considerations and simple rational fractions, we
are led to conjecture ω = 3/5, φ = 1/5, ρ = 1/2, ρ′ = 3/2,
δ = θ = 2/5 and η = 6/25.
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To reduce the uncertainties in Monte-Carlo simula-
tions, bigger size N are needed, in particular in the case
where the large N behavior would be affected by loga-
rithmic laws. Moreover, we hope to progress in analytical
methods for calculating these exponents as well.

6 Applications

We now discuss two applications of the structure of the
core: the first one to the conductor-insulator transitions
in random graphs and the second one to combinatorial
optimization problems.

6.1 Localization on random graphs

We denote by Z(G) the dimension of the kernel (the sub-
space of eigenvectors with eigenvalue 0) of the adjacency
matrix of the graph G. It is known [11] that Z(G) is in-
variant under leaf removal (see Ref. [12] for a proof and
an application to random trees). As the adjacency matrix
is block-diagonal with one block per connected compo-
nent, Z(G) is additive on connected components. These
two properties imply that

Z(G) = Z(C) + Z(I) = Z(C) + |I| ≤ Nc + |I|.

The last equality is because the adjacency matrix vanishes
for a collection of isolated points. This analysis applies to
any graph, and remains valid after averaging. Even if the
probability distribution is not that of a random graph,
we see that as soon as leaves appear with a non vanishing
weight (this is true for instance if the probability distribu-
tion is that of a lattice with impurities), the spectrum of
the adjacency matrix has a delta peak at the origin. How-
ever, the fact that, as we show below for random graphs,
leaf removal accounts for the full weight of this delta peak
seems rather non generic.

Taking the average of these formulæ for random graphs
and using our results on the core, we get that Z(G) =
Nz(α) + o(N) for a large random graph G with average
connectivity α, with

z(α) = i(α) for α ≤ e, (11)
i(α) ≤ z(α) ≤ c(α) + i(α) for α > e.

It has been argued in reference [7] that

z(α) =
A+B +AB

α
− 1 (12)

for all values of α. Combined with our present results,
this means that

z(α) = i(α) for all values of α.

We may interpret equation (11) as an independent proof
of equation (12) for α ≤ e and we may also infer that the

adjacency matrix of the core of a random graph at α > e
has a kernel of size o(N).

In reference [7], it was shown that e is in a domain of
the α parameter for which delocalized vectors are respon-
sible for a finite fraction of the size of the kernel. Imag-
ine that we start to increase α very slowly from α = e
by adding randomly new edges one by one to the ran-
dom graph. We watch the competition between the core
(which, we have seen, carries few elements in the kernel),
the localized eigenvectors in the kernel and the delocalized
ones. The competition between the core and the full kernel
is not very strong: when n edges, with 1 � n � N , are
added to the graph, the core grows in average of 24 e−2n
vertices, while e−2n vectors in the kernel are lost. How-
ever, by the results of reference [7], about n2 delocalized
eigenvectors disappear and n2 localized eigenvectors re-
place these. It is intuitive that delocalized eigenvectors in
the kernel, which live on large structures on the random
graph, have a high probability to be perturbed by the
growing core. But the precise mechanism by which their
extinction is almost compensated by new localized vectors
in the kernel remains to be elucidated.

The concept of leaf removal process can also be used
to analyze the localization-delocalization transitions that
occur at αd ≈ 1.42153 and αr ≈ 3.15499. As shown in
reference [7], the localized eigenvectors in the kernel live
on definite structures that can be drawn on the random
graph. These structures are finite (connected) trees that

– can be bicolored brown-green in such a way that all
vertices with 0 or 1 neighbor are green and all neigh-
bors of the green vertices in the random graph belong
to the tree; the neighbors of the brown vertices on the
other hand, can be anywhere on the random graph;

– are maximal, i.e. are not part of a larger tree with the
same properties. Observe that each isolated point is
maximal.

We can put marks on all vertices belonging to such struc-
tures and build histories of leaf removal processes such
that the initial steps remove only marked vertices, and
after these steps, the only remaining marked vertices are
now isolated.

Then if α is small (α ≤ αd) or large (α ≥ αr), the
number of isolated marked points is Ni(α) + o(N). This
implies in particular that at most o(N) bunches of the
remaining graph contain more than one leaf.

On the other hand, if α ∈]αd, αr[ the number of iso-
lated marked points is less than Ni(α): a number of order
N of non-trivial bunches will have to appear somewhere
during the rest of the leaf removal process.

6.2 Vertex covers and matchings

Apart from the size of the kernel, several other interesting
quantities attached to graphs behave rather simply un-
der leaf removal. We mention two, which are related to
combinatorial optimization problems.

Vertex cover: A vertex cover of a graph is a subset
of the vertices containing at least one extremity of every
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edge of the graph. We denote by X(G) the minimal size
of a vertex cover of a graph G.

There is a nice “practical” interpretation of X(G).
Imagine that the edges of the graph are the (linear) cor-
ridors of a museum, the vertices corresponding to ends of
corridors. A guard sitting at a vertex can control all the
incident corridors. So X(G) is the minimum number of
guards needed to control all corridors of the museum.

Edge disjoint subset, matching: An edge disjoint
subset is a subset of the edges such that no two edges in
the subset have a vertex in common. This is also called a
matching. We denote by Y (G) the maximal size of edge
disjoint subset in a graph G. Finding such a maximal edge
disjoint subset is called the matching problem.

The determination of X(G) or Y (G) for a given G are
archetypal of two classes of optimization problems. While
it is known that the matching problem can be solved in
polynomial time (see e.g. Ref. [4] and references therein),
the museum guard problem is in the Non-deterministic
Polynomial (NP) class because no polynomial time algo-
rithm is known to solve it (and such an algorithm is not
expected to exist, this is related to the famous P 6=NP con-
jecture), but given a candidate solution, it is easy to check
in polynomial time that it is correct.

When G is a large random graph, one may ask for
thermodynamic solutions of these problems, when only the
extensive contributions to X(G) or Y (G) are considered
as relevant. This leads to the following definition:

Vertex cover fraction x(α), matching fraction
y(α): For fixed α, the vertex cover fraction x(α) and the
matching fraction y(α) are the limits of the averages of
X(G)/N and Y (G)/N when G is a random graph of size
N and N →∞.

Let us note however that the one can probably exhibit
combinatorial optimization problems for which the ther-
modynamic solution can be obtained in polynomial time,
but taking into account the non-extensive remainder is
prohibitively long.

The replica trick has been used by Hartmann and
Weigt to obtain a lower bound for x(α) in a series of
papers [6,13,14]. They have shown that for α ≤ e, the
replica symmetric solution is stable, whereas it become
unstable for α > e. The replica symmetric solution leads
to

x(α) = 1− 2W +W 2

2α
for α ≤ e.

This relation has to break down somewhere, because a
result of Frieze [15] implies that

x(α) = 1− 2
α

(logα− log logα− log 2 + 1) + o(
1
α

),

whereas W ∼ logα for large α, so that the asymptotics of
1− 2W+W2

2α starts with 1− log2 α
2α . Weigt and Hartmann [14]

have also used a good algorithm to get an approximation
of a minimal vertex cover. The idea is essentially to look

for a vertex with a maximal number of incident corridors
and put a guard there. Then remove the site and the ad-
jacent corridors and iterate. This is always fast, but gives
only an upper bound for X(G). This can be refined, but
then the algorithm needs a very long time when α > e.

We show how leaf removal can be applied to the mu-
seum guard problem. If (v, w) is a leaf of G, there is a
minimal vertex cover with a guard at v. This is because
any vertex cover has a guard at v or at w, and a guard
at v makes the guard at w useless. So if a minimal vertex
cover has a guard at w, moving it to v yields another min-
imal vertex cover. Isolated vertices do not need guards.
The leaf removal of (v, w) leading from G to G′ removes
exactly the corridors controlled by the guard at v. Hence
X(G) = X(G′) + 1.

An analogous argument applies to maximum edge dis-
joint subsets. Indeed, if (v, w) is a leaf of G, there is a
maximal edge disjoint subset that contains {v, w}. This is
because if no edge of an edge disjoint subset touches v,
this edge disjoint subset is not maximal (it can be com-
pleted with {v, w}), and if an edge disjoint subset has an
edge that touches v, replacing this edge by {v, w} yields
an edge disjoint subset of the same size. The leaf removal
of (v, w) leading from G to G′ removes, apart from {v, w},
exactly the edges that cannot belong to any edge disjoint
subset containing {v, w}. Hence Y (G) = Y (G′) + 1.

Some general inequalities can be proved. For instance
X(G) ≥ Y (G) (the triangle is an example when the in-
equality is strict) and Z(G) ≥ N − 2X(G). However,
Z(G) − N + 2Y (G) can have any sign (negative for the
triangle but positive for the square).

Anyway, at each leaf removal, two vertices are re-
moved, so Z(G), N(G) − 2X(G) and N(G) − 2Y (G) are
invariant under leaf removal. Moreover, X and Y vanish
for unions of isolated vertices. To summarize,

X(G) = X(C) +
N −Nc − |I|

2

Y (G) = Y (C) +
N −Nc − |I|

2
.

Z(G) = Z(C) + |I|.

Karp and Sipser [3,4] have devised an approximate
algorithm to get a good (if not optimal) matching. There
are two possible transformations:

(1) “Remove a leaf”,
(2) “Choose an edge at random, remove it together

with its extremities and all edges touching the extremi-
ties”, and they are are performed according to the follow-
ing rule:

At each step, until the graph is empty, do (1) if possible
and if not, do (2). So starting from G, one applies (1) until
the core of G is obtained. Then (2) is applied as long as no
new leaf appears. As soon as a graph with leaves appears,
apply (1) to reach the core of this new graph, and so on.

At each step an edge is singled out, and by construc-
tion, the set of all these edges defines a matching, i.e. an
edge disjoint subset.
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When G is a random graph with α < e, the core is
small (o(N) for large N). Thus,

x(α) = y(α) =
1− z(α)

2
= 1− 2W +W 2

2α
forα ≤ e,

which gives in particular an independent proof of the re-
sult of Weigt and Hartmann [6]. Note that in this case,
the approximate algorithm is to put a guard at a vertex
touching as many edges as possible, then remove it and
iterate, whereas the exact algorithm is almost the oppo-
site, namely, put a guard at the connected end of a leaf,
remove the leaf and iterate. Leaf removal gives a very fast
algorithm (linear in N if the graph is properly encoded)
to construct a minimal vertex cover when α < e.

Karp and Sipser have shown that for a large random
graph with α > e, their algorithm for matching finds
with high probability a matching of about Nc/2 edges
in the core. This is a lower bound for the matching
number of the core, but at the same time, this is the
maximum possible. So this shows at once that the
core has a thermodynamically perfect matching, and
that their algorithm is thermodynamically optimal. Hence

y(α) = 1− A+B +AB

2α
for anyα

so that the relation y(α) = 1−z(α)
2 is valid for every α: the

fact that the core does not contribute thermodynamically
to zero eigenvalues and the fact that it has a thermody-
namically perfect matching are closely related.

If α > e, leaf removal stops while an extensive number
of edges are still present: this gives a lower bound for x(α)
which is very poor at large α. But it seems clear that
the replica symmetry breaking [14] at α = e is tightly
connected to the fact that the structure of the core of a
random graph is more complicated than the structure of
the parts eliminated by leaf removal, so that a more refined
Parisi order parameter is needed to describe the phaseα >
e. While we have seen that the matching parameter y(α)
and the kernel-size parameter z(α) are well understood
and closely related, the exact evaluation of vertex cover
parameter x(α) remains as a challenge.

7 Conclusions

In this paper we have presented a physicist’s analysis of a
deep feature of random graphs: a geometric second order
phase transition with the emergence of a core at threshold
α = e. This core is the residue when leaves (i.e. points with
a single neighbor and this neighbor) and isolated points
are iteratively removed. We have argued that the core is
dominated by a giant component. The dominant contri-
bution of the large N behavior of the relevant thermody-
namic quantities was computed exactly by a direct count-
ing method. We have studied numerically the finite size

behavior of the core, defined a variety of new critical expo-
nents and obtained approximations consistent with their
mutual relationships. Our analysis excludes the exponents
of standard percolation in random graphs. Finally, we have
applied our results to the localization transition and to
combinatorial optimization problems on random graphs.

However, some more analytical or numerical work is
needed to identify without any doubt the exponents for
the phase transition at α = e. An open question is the
interaction between the emergence of the core and the de-
localized eigenvectors of the adjacent matrix with eigen-
value 0. A fine study of the distribution of the sizes of
the connected components of the core could be done with
Monte-Carlo simulations: for α > e, we expect a giant
component, plus a finite number of finite components.
Moreover we have shown that the number of eigenvectors
with eigenvalue 0 living on the core is o(N) and numerical
simulations could give the precise asymptotics.

Finally, as the core percolation appears in a simple
model of random graphs, which is governed only by one
parameter, the average connectivity α, we expect that this
transition is universal in the sense that some character-
istics of this transition (second order, critical exponents,
etc., but not the precise value of α = e at the transition)
could be seen in other models or real materials.

We are very indebted to Graham Brightwell and Boris Pittel
for drawing our attention to the mathematical literature on
matching in random graphs and its relevance for our work.

Appendix: The core is well-defined

In this appendix, we show by induction on the number N
of vertices of G that the property

PN ≡ “the number of isolated points |I| after leaf
removal and the core C of a graph G on N vertices
do not depend on the history”

holds for any N ≥ 0.
To start the induction, if G has 0 or 1 vertex, there

is no leaf hence there is only one history, so P0 and P1

are true. Suppose now that P0, · · · ,PN−1 are proved and
take a graph G on N ≥ 2 vertices. We distinguish several
cases:

1 If G has no leaf, there is only one history so PN is true
for G.

2 If G has exactly one leaf, all histories start with the
same first leaf removal, lead to the same G′ for which
PN−2 is true by the induction hypothesis, so PN is
true for G.

3 If G has at least two leaves, we compare two histories:

H1 = G, (v1, w1), G′1, · · · and
H2 = G, (v2, w2), G′2, · · ·
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3a If {v1, w1} = {v2, w2}, G′1 = G′2 to which the induction
hypothesis PN−2 applies, so that C1 = C2 and |I1| =
|I2|.

3b If v1 = v2 but w1 6= w2 (the two leaves are distinct
but belong to the same bunch, this can happen only if
N ≥ 3), then G′1 has w2 as an isolated point, G′2 has w1

as an isolated point, but G′1/{w2} = G′2/{w1} = G′′,
say. Further leaf removals can take place only on G′′,
to which the induction hypothesis PN−3 applies, so
again, C1 = C2 and |I1| = |I2|.

3c Suppose that (v1, w1) and (v2, w2) do not belong to
the same bunch. This can happen only if N ≥ 4. Then
(v1, w1) is a leaf of G′2 and (v2, w2) is a leaf of G′1. The
graph obtained from G′2 by leaf removal of (v1, w1) and
the graph obtained from G′1 by leaf removal of (v2, w2)
are the same, because they are both equal to G′′, the
subgraph of G induced by V/{v1, w1, v2, w2}. Take a
history H′′ for G′′. It can be completed to give two
histories for G, H′′1 = G, (v1, w1), G′1, (v2, w2),H′′ and
H′′2 = G, (v2, w2), G′2, (v1, w1),H′′. The induction hy-
pothesis PN−2 applies to G′1 soH′′1 andH1 have to end
with the same core and the same number of isolated
points. The same is true for H′′2 and H2 because the
induction hypothesis PN−2 applies to G′2, and also for
H′′1 and H′′2 because the induction hypothesis PN−4

applies to G′′. By transitivity, H1 and H2 end with
the same core and the same number of isolated points:
C1 = C2 and |I1| = |I2|.

All possibilities have been examined, hence whatever the
number of leaves of G, PN is true for G. This completes
the induction step.
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